Article ID Journal Published Year Pages File Type
3071118 Neurobiology of Disease 2006 10 Pages PDF
Abstract

Structural and functional MRI was used in conjunction with computerized electron microscopy morphometry to study changes 2 h, 24 h and 3 days after 4-aminopyridine-induced seizures lasting 2 h in rats. T2 (relaxation time) values showed changes throughout the cerebral cortex, hippocampus, amygdala and medial thalamus, with a different temporal progression, showing a complete recovery only after 3 days. Two hours after seizures, the apparent diffusion coefficient was decreased throughout the brain compared to control animals, and a further decrease was evident 24 h after seizures. This was followed by a complete recovery at 3 days post-seizures. Functional MRI was performed using regional cerebral blood volume (rCBV) maps. The rCBV was increased shortly after convulsions (2 h) in all structures investigated, with a significant return to baseline values in the parietal cortex and hippocampus, but not in the medial thalamic nuclei, 24 h after seizure onset. No rCBV alterations were detected 3 days after seizures. Electron microscopy of tissue samples of parietal neocortex and hippocampus revealed prominent astrocytic swelling 2 h post-convulsions which decreased thereafter gradually. In conclusion, this experiment reports for the first time structural and functional brain alterations, lasting several hours, in 4-aminopyridine-treated rats after seizure onset. MRI approach combined with histological and ultrastructural analysis provided a clarification of the mechanisms involved in the brain acute response to ictal activity.

Related Topics
Life Sciences Neuroscience Neurology
Authors
, , , , , , , , , ,