Article ID Journal Published Year Pages File Type
307190 Soils and Foundations 2015 12 Pages PDF
Abstract

Understanding the distribution of earth pressure on buried structures is essential for the analysis and design of pipes, tunnels and vertical shafts. This paper presents the results of an experimental investigation that has been conducted to measure the distribution of contact pressure on rigid pipes using tactile sensing technology. The method allows for a continuous pressure profile to be measured around the pipes using flexible sheets that can follow the cylindrical shape of the pipes. The physical model involves a buried pipe installed in granular material subjected to strip surface loading. The effect of introducing a geogrid reinforcement layer above the pipe on the distribution of contact pressure is also examined. To further study the distribution of pressure on the buried structure and the soil-geogrid interaction, numerical analyses are performed using a multi-scale finite-discrete element framework that allows for both the explicit modeling of soil particles using discrete elements and the modeling of the embedded structure using finite elements. The numerical framework is first validated using the experimental results and then used to investigate the detailed behavior of the soil-pipe system.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,