Article ID Journal Published Year Pages File Type
3073695 NeuroImage 2006 12 Pages PDF
Abstract

This study was designed to track systemically administered mononuclear cells (MNCs) in the ischemic mouse brain using 7 T magnetic resonance imaging (MRI). Splenectomized wild-type mice were subjected to brain ischemia by 30 or 60 min filamentous occlusion of the middle cerebral artery (MCAo) and reperfusion. Spleen-derived MNCs were labeled with very small superparamagnetic iron-oxide particles (VSOP) and transfused into recipient mice 30 min, 8 h, or 24 h after MCAo via the tail vein. High-resolution MRI sequences were designed to monitor the dynamics of brain ischemia and to observe the migration and engraftment of transfused cells into the ischemic brain. T2*-weighted (gradient-echo) hypointense signal changes became apparent at 24–48 h after transfusion, were typically associated with the ischemic lesion border, and could be followed up to 5 weeks after the insult. Such presumed MNC-associated signal changes in MRI were confirmed by histochemical detection of iron (Prussian blue staining) and detection of constitutively expressed green fluorescent protein (GFP) in a subset of animals transfused with MNCs derived from GFP transgenic mice. Taken together, our results demonstrate that brain engraftment of systemically administered mononuclear cells can be visualized non-invasively over time and space using high-resolution MRI.

Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , , , , , , , , , , ,