Article ID Journal Published Year Pages File Type
307400 Soils and Foundations 2012 10 Pages PDF
Abstract

Deep-seated landslides in slopes are often induced by rainfall due to pre-existing cracks or weak layers. A series of centrifuge model tests under rainfall conditions were conducted on slopes with different types of cracks. The histories of suction and displacement of the slope were measured during the tests to investigate the infiltration–deformation–failure process of the slopes. The wetting front curved notably near the crack under rainfall conditions. The deformation of the slope was mainly caused by the saturation of soil and crack-affected water infiltration under rainfall conditions. The displacement process of the slopes with cracks can be divided into a small displacement stage, a rapid increase stage, and a stable stage. The influence of the crack on the infiltration and deformation of the slope decreased with increasing distance from the crack. Rainfall induced significant vertical deformation near the vertical crack rather than horizontal deformation. In contrast to the oblique crack, the vertical crack on the slope top was unlikely to lead to global landslide under rainfall conditions. The deformation–failure behavior of the slope with cracks was also affected by the rainfall style and rain intensity.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , , , ,