Article ID Journal Published Year Pages File Type
309511 Thin-Walled Structures 2010 9 Pages PDF
Abstract

Results of numerical investigations on the effects of material degradation due to corrosion on the dynamic characteristics of ground-based, anchored, steel liquid storage tanks are presented. Internal corrosion is considered as a time-dependent constant thinning of the wall, at locations in contact with residual water, water condensate, atmospheric oxygen and acid gases. Dynamic analyses are performed on numerical tank-liquid models, having different aspect ratios and wall thicknesses at different stages of wall thinning at the specified locations. The aim of the analyses is to determine the corrosion effects on the natural periods and mode shapes of vibration. Steady-state, harmonic base excitation analyses are also carried out to determine the corrosion effects on the hydrodynamic pressures produced in the liquid. It is found that progressive corrosion has significant effects on the tank fundamental period and its associated mode shape of vibration as well as the magnitude and location of the maximum hydrodynamic pressure and that as design provisions should cover the service life of the tank, the errors associated with the current code provisions for design of such tanks cannot be ignored.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,