Article ID Journal Published Year Pages File Type
309622 Thin-Walled Structures 2010 15 Pages PDF
Abstract

The classical finite difference technique and methods based on series expansions can only be adopted for solving plates with simple geometry, loading and boundary conditions. In contrast, the finite element method has been widely used for general analysis of bending and flexible plates (coupled bending and in-plane effects). Lack of stress continuity and relatively expensive mesh generation and remeshing schemes have led to the emergence of meshless methods, such as the finite point method (FPM). FPM is a strong form solution which combines the moving least square interpolation technique on a domain of irregularly distributed points with a point collocation scheme to derive system governing equations. In this study, coupled nonlinear partial differential equations of fourth order are solved to analyse large deflection behaviour of plates subjected to lateral and in-plane loadings. Several plate problems are solved and compared with analytical solution and other available numerical results to assess the performance of the proposed approach.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,