Article ID Journal Published Year Pages File Type
309650 Thin-Walled Structures 2011 11 Pages PDF
Abstract

A curved axisymmetric shell finite element based on a consistent first-order shear deformable shell theory is developed for the linear stability analysis of cross-ply laminated shells of revolution under compressive loads. Finite element analysis results are presented for isotropic, orthotropic and cross-ply laminated shells of revolution in comparison with the analytical and numerical results found in the literature. These comparisons demonstrate the applicability and the high performance of the element in stability analysis of thin and moderately thick cross-ply laminated composite shells of revolution under compressive loads.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,