Article ID Journal Published Year Pages File Type
309651 Thin-Walled Structures 2011 10 Pages PDF
Abstract

The paper investigates collapse mechanisms and energy absorption capacity during the axial compression of the end-capped thin-walled circular aluminum tubes which are hollow or filled with polyurethane foam. An experimental technique is used to evaluate the crushing behavior of the circular tubes under compressive quasi-static strain rate. A numerical model is presented based on finite element analysis to simulate the crushing of circular tubes considering nonlinear response due to material behavior, contact boundary conditions and large deformation. The validated model using existing experimental results is used to evaluate the dynamic response in order to determine the dynamic amplification factor relating the quasi-static results to dynamic response. The experimental and numerical results are used to determine energy absorption capacity due to the plastic deformation of thin-wall tube and crushable foam. The performance of end-capped tubes is compared with non-capped tubes and it is found that maximum initial peak load can be controlled and convenient crash protection systems can be obtained using end-capped circular tubes.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,