Article ID Journal Published Year Pages File Type
3106367 Burns 2008 8 Pages PDF
Abstract
This study was aimed to investigate the effects of SB203580, the specific p38 mitogen-activated protein (MAP) kinase inhibitor, on cardiac myocyte survival and secretion of cytokines in an in vitro model of hypoxia and burn serum challenge. Results demonstrated that hypoxia and burn serum induced a persistent activation of p38 MAP kinase in primary cultured neonatal rat cardiomyocytes during the 12 h period of stimulation, concomitant with a time-dependent increased expression of tumor necrosis factor (TNF)-α and inducible nitric oxide (iNOS), a progressively developed oxidative stress reflected by malondialdehyde (MDA) production, and myocytes injury evidenced by the increased levels of released lactate dehydrogenase (LDH) and the decreased myocyte viability. Furthermore, hypoxia and burn serum resulted in a significant increase in myocyte apoptosis, which may account for the impairment of myocyte viability as observed. SB203580 abolished p38 MAP kinase activation, blunted the upregulation of TNF-α, iNOS and the subsequent nitric oxide (NO) production, reduced oxidative stress, and alleviated hypoxia and burn serum-induced myocytes injury or apoptosis. These results demonstrated for the first time that inhibition of p38 MAP kinase improves survival of cardiac myocytes with hypoxia and burn serum challenge possibly via reducing the production of cytokines, such as TNF-α and NO, and the subsequent oxidative stress, providing strong evidence that the excessive inflammatory cytokines produced by cardiomyocytes themselves may be sufficient to cause myocardial injury after burn.
Related Topics
Health Sciences Medicine and Dentistry Critical Care and Intensive Care Medicine
Authors
, , , , ,