Article ID Journal Published Year Pages File Type
311102 Tunnelling and Underground Space Technology 2006 18 Pages PDF
Abstract

Numerous empirical and analytical relations exist between shield tunnel characteristics and surface and subsurface deformation. Also, 2-D and 3-D numerical analyses have been applied to such tunneling problems. Similar but substantially fewer approaches have been developed for earth pressure balance (EPB) tunneling. In the Bangkok MRTA project, data on ground deformation and shield operation were collected. The tunnel sizes are practically identical and the subsurface conditions over long distances are comparable, which allow one to establish relationships between ground characteristics and EPB – operation on the one hand, and surface deformations on the other hand. After using the information to identify which ground- and EPB-characteristic have the greatest influence on ground movements, an approach based on artificial neural networks (ANN) was used to develop predictive relations. Since the method has the ability to map input to output patterns, ANN enable one to map all influencing parameters to surface settlements. Combining the extensive computerized database and the knowledge of what influences the surface settlements, ANN can become a useful predictive method. This paper attempts to evaluate the potential as well as the limitations of ANN for predicting surface settlements caused by EPB shield tunneling and to develop optimal neural network models for this objective.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, ,