Article ID Journal Published Year Pages File Type
3118848 American Journal of Orthodontics and Dentofacial Orthopedics 2009 6 Pages PDF
Abstract

IntroductionMany case reports have documented the successful use of titanium miniscrews for orthodontic anchorage. However, the literature lacks a well-controlled study examining the effect of miniscrew diameter on anchorage force resistance. The purpose of this in-vitro study was to compare the force resistance of larger-diameter monocortical miniscrews to smaller-diameter monocortical miniscrews; and to compare the force resistance of larger-diameter monocortical miniscrews to smaller-diameter bicortical miniscrews.MethodsNinety-six titanium alloy screws were placed into 24 hemisected maxillary and 24 hemisected mandibular specimens between the first and second premolars. Specimens were randomly and evenly divided into 2 groups. In the first group, 24 large-diameter screws (2.5 × 17 mm) and with 24 small-diameter screws (1.5 × 15 mm) were placed monocortically. In the second group, 24 large-diameter screws (2.5 × 17 mm) were placed monocortically and 24 small-diameter screws (1.5 × 15 mm) were placed bicortically. All screws were subjected to tangential force loading perpendicular to the miniscrew with lateral displacement of 0.6 mm. Statistical analyses, including the paired-samples t test and the 2-samples t test, were used to quantify screw force-deflection characteristics. One-way analysis of variance (ANOVA) with the post-hoc Tukey studentized range test was used to determine any significant differences, and the order of those differences, in force anchorage values among the 3 screw types at maxillary and mandibular sites.ResultsMean mandibular and maxillary anchorage force values of the 2.5-mm monocortical screws were significantly greater than those of the 1.5-mm monocortical screws (P <0.01). No statistically significant differences in mean mandibular anchorage force values were found between the 2.5-mm monocortical screws and the 1.5-mm bicortical screws. However, mean maxillary anchorage force values of the 1.5-mm bicortical screws were significantly greater than those of the 2.5-mm monocortical screws (P <0.01). Data analyzed with 1-way ANOVA with the post-hoc Tukey studentized range tests indicated that the mean mandibular and maxillary force values of the 2.5-mm monocortical screws and the 1.5-mm bicortical screws were significantly greater than those of the 1.5-mm monocortical screws (P <0.01). Based on the 2-samples t test, mean anchorage force values at mandibular sites were significantly greater than at maxillary sites for the 2.5-mm monocortical screws and the 1.5-mm monocortical screws. There were no statistically significant differences in mean anchorage force values between maxillary and mandibular sites for the 1.5-mm bicortical screws.ConclusionsIn vitro, larger-diameter (2.5 mm) monocortical screws provide greater anchorage force resistance than do smaller-diameter (1.5 mm) monocortical screws in both the mandible and the maxilla. Smaller-diameter (1.5 mm) bicortical screws provide anchorage force resistance at least equal to larger-diameter (2.5 mm) monocortical screws. An alternative to placing a larger-diameter miniscrew for additional anchorage is a narrower bicortical screw.

Related Topics
Health Sciences Medicine and Dentistry Dentistry, Oral Surgery and Medicine
Authors
, , , , , , , ,