Article ID Journal Published Year Pages File Type
3132651 International Journal of Oral and Maxillofacial Surgery 2013 10 Pages PDF
Abstract
The aim of this study was to evaluate the suitability of tissue-engineered mucosa (TEM) as a model for studying the acute effects of ionizing radiation (IR) on the oral mucosa. TEM and native non-keratinizing oral mucosa (NNOM) were exposed to a single dose of 16.5 Gy and harvested at 1, 6, 24, 48, and 72 h post-irradiation. DNA damage induced by IR was determined using p53 binding protein 1 (53BP1), and DNA repair was determined using Rad51. Various components of the epithelial layer, basement membrane, and underlying connective tissue were analyzed using immunohistochemistry. The expression of cytokines interleukin-1β (IL-1β) and transforming growth factor beta 1 (TGF-β1) was analyzed using an enzyme-linked immunosorbent assay. The expression of DNA damage protein 53BP1 and repair protein Rad51 were increased post-irradiation. The expression of keratin 19, vimentin, collage type IV, desmoglein 3, and integrins α6 and β4 was altered post-irradiation. Proliferation significantly decreased at 24, 48, and 72 h post-irradiation in both NNOM and TEM. IR increased the secretion of IL-1β, whereas TGF-β1 secretion was not altered. All observed IR-induced alterations in TEM were also observed in NNOM. Based on the similar response of TEM and NNOM to IR we consider our TEM construct a suitable model to quantify the acute biological effects of IR.
Related Topics
Health Sciences Medicine and Dentistry Dentistry, Oral Surgery and Medicine
Authors
, , , , ,