Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
3145055 | Journal of Dentistry | 2014 | 8 Pages |
ObjectivesHealth condition of the gingival tissues contacting the surfaces of fixed prostheses is a result of multiple etiologic factors. The aim of the investigation discussed here was to evaluate the attachment and proliferation rate of cultured human epithelial cells on three commonly used restorative materials under in vitro conditions.MethodsMorphological and chemical structure of polished lithium-disilicate (IPS e.max Press, Ivoclar Vivadent AG, Germany), yttrium modified zirconium dioxide (5-TEC ICE Zirkon Translucent, Zirkonzahn GmbH Srl, Germany) and cobalt chromium alloy (Remanium star, Dentaurum GmbH & Co. KG, Germany) discs were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM). Human epithelial cells harvested and cultured from one donor, were applied to investigate cell attachment (24 h observation) and proliferation (72 h observation) via dimethylthiazol-diphenyl tetrazolium bromide (MTT) and AlamarBlue® (AB) assays on control surface (cell-culture plate) and on the restorative materials (n = 3 × 20 specimens/material).ResultsSEM and AFM revealed typical morphology and roughness features for the materials. Zirconia presented significantly higher Ra value. EDS confirmed typical elements on the investigated restorative materials: lithium-disilicate (Si, O); Zirconia (Zi, Y, O); CoCr (Co, Cr, W). All surfaces except CoCr exhibited significant cell proliferation according to MTT and AB assays after 72 h compared to 24 h. Among the restorative materials, CoCr samples showed the highest cell attachment as indicated by MTT assay. AB results showed that attachment and proliferation of human epithelial cells is supported more on lithium-disilicate. Both assays indicated the lowest value for zirconia.ConclusionsThe results indicate that the restorative materials examined are equally suitable for subgingival restorations. Lithium-disilicate exhibited the best biocompatibility.Clinical significanceThe examined materials are indicated for use in restorative procedures, directly contacting the sulcular epithelial tissues. Thus it is essential to monitor the biological acceptibility of these materials in order to better understand their clinical properties. The results indicate that Lithium-disilicate is a suitable material for such purposes.