Article ID Journal Published Year Pages File Type
3156741 Journal of Oral and Maxillofacial Surgery 2012 8 Pages PDF
Abstract

PurposePrimary stability has been regarded as a key factor to ensure uneventful osseointegration of dental implants. Such stability is often achieved by placing implants in undersized drilled bone. The present study evaluated the effect of drilling dimensions in insertion torque and early implant osseointegration stages in a beagle dog model.Materials and MethodsSix beagle dogs were acquired and subjected to bilateral surgeries in the radii 1 and 3 weeks before death. During surgery, 3 implants, 4 mm in diameter by 10 mm in length, were placed in bone sites drilled to 3.2 mm, 3.5 mm, and 3.8 mm in diameter. The insertion torque was recorded for all samples. After death, the implants in bone were nondecalcified processed and morphologically and morphometrically (bone-to-implant contact and bone area fraction occupancy) evaluated. Statistical analyses were performed using the Kruskal-Wallis test followed by Dunn's post hoc test for multiple comparisons at the 95% level of significance.ResultsThe insertion torque levels obtained were inversely proportional to the drilling dimension, with a significant difference detected between the 3.2-mm and 3.8-mm groups (P = .003). Despite a significant increase in the bone-to-implant contact over time in vivo for all groups (P = .007), no effect for the drilling dimension was observed. Additionally, no effect of the drilling dimension and time was observed for the bone area fraction occupancy parameter (P = .31). The initial healing pathways differed between implants placed in bone drilled to different dimensions.ConclusionsAlthough different degrees of torque were observed with different drilling dimensions and these resulted in different healing patterns, no differences in the histometrically evaluated parameters were observed.

Related Topics
Health Sciences Medicine and Dentistry Dentistry, Oral Surgery and Medicine
Authors
, , , , , , , ,