Article ID Journal Published Year Pages File Type
3160688 Journal of Prosthodontic Research 2010 10 Pages PDF
Abstract

PurposeThere is no clear evidence of the factors that could improve implant biomechanics in the posterior maxilla. Thus, a finite element analysis was performed to investigate the effect of maxillary cortical bone thickness, implant design and diameter on stress around implants.MethodsA total of 12 models of the posterior maxilla with implant were computer-simulated by varying the thickness of the alveolar cortical bone (1.5, 1.0, 0.5 or 0 mm) and implant characteristics (cylindrical implant of 4.1-mm diameter, screw-type implants of 4.1-mm or 4.8-mm outer diameters). On top of each implant, forces were separately applied axially (100 N) and buccolingually (50 N), and the von Mises stresses were calculated.ResultsRegardless of load direction, implant design and diameter, cortical and cancellous bone stresses increased with the decrease of crestal cortical bone thickness. In the absence of crestal cortical bone, cancellous bone stresses were highest and, under axial load, were transferred to the sinus floor. Implant design and diameter influenced stress to a less extent, especially under buccolingual load and in the presence of crestal cortical bone.ConclusionsFrom a biomechanical viewpoint, to improve implant success odds in the posterior maxilla, rather than implant selection, careful preoperative evaluation of the cortical bone at the planned implant site is recommended. If this cortical bone is very thin or even lacking, implant treatment should be carried on with caution by progressive loading in the range of functional loads.

Related Topics
Health Sciences Medicine and Dentistry Dentistry, Oral Surgery and Medicine
Authors
, , , , ,