Article ID Journal Published Year Pages File Type
3213421 Journal of Dermatological Science 2011 8 Pages PDF
Abstract

BackgroundFibroblast activation is strongly influenced by mechanical environment in the wound-healing process, especially in fibrosis. Mechanically stressed three-dimensional collagen embedded culture is a useful model representing fibroblasts in morphological as well as biochemical situations encountered during fibrosis.ObjectiveTo find key proteins involved in reducing the number of fibroblasts during mechanical stress, we performed two-dimensional gel electrophoresis (2DE)-based differential display and siRNA-based functional screening with collagen gel culture focusing on the differences between attached and detached culture environments.MethodsMembrane extracts of fibroblasts from 1 day of attached or detached cultures were subjected to 2DE. We compared protein expression levels and identified the attached-culture-dominant proteins by MALDI-TOF-MS. Next, fibroblasts were transfected with siRNA and embedded in collagen gel. Cell number was counted after 3 days in culture.ResultsEight attached culture dominant proteins were identified with MALDI-TOF-MS. Transfection of siRNA against these proteins demonstrated that electron transfer flavoprotein β subunit (ETFB)-specific siRNA reduced the cell number in the attached culture without a decrease in the detached culture.ConclusionETFB participates in the mechanoregulation of fibroblast cell number in collagen gel culture.

Related Topics
Health Sciences Medicine and Dentistry Dermatology
Authors
, , , , ,