Article ID Journal Published Year Pages File Type
3216801 Journal of Investigative Dermatology 2010 9 Pages PDF
Abstract

Contact hypersensitivity (CHS) reaction is a form of delayed-type of hypersensitivity caused by contact allergens such as oxazolone (OXA). In previous studies it has been shown that poly(ADP-ribose) polymerase (PARP) inhibition reduces the extent of inflammation in CHS. We aimed to shed light on the molecular events causing the protective effect of PARP inhibitors. PARP-1 and -2 knockout mice were sensitized by abdominal delivery of OXA, and a week later CHS was induced by applying OXA on the ears of the mice. PARP-1−/- mice were protected against OXA-induced CHS in contrast to PARP-2−/- mice. In PARP-1−/- mice, neutrophil infiltration was reduced in line with the suppressed expression of proinflammatory cytokines, cell adhesion factors, and matrix metalloproteinase-9, which is likely because of impaired activation of NF-κB p65 and activating transcription factor-2, the two redox-sensitive transcription factors. Moreover, reduced nitrosative and oxidative stress was observed under inflammatory conditions in the PARP-1−/- mice when compared with PARP-1+/+. In conclusion, PARP-1 activation is necessary for proinflammatory gene expression through which PARP-1 enhances neutrophil infiltration and hence oxidative/nitrosative stress, forming a vicious circle, and further aggravating the inflammatory process. Our data identify PARP-1 as a possible target in CHS.

Related Topics
Health Sciences Medicine and Dentistry Dermatology
Authors
, , , , , , , , , , ,