Article ID Journal Published Year Pages File Type
322872 Hormones and Behavior 2008 9 Pages PDF
Abstract

Testosterone (T) appears to play a role in anxiety and sensorimotor gating in rodents, but whether T acts through the androgen receptor (AR) to influence these behaviors is less clear. We compared adult genetic male mice with the testicular feminization mutation (Tfm), which lack functional ARs, to wild type male littermates (wt males) on an assay of sensorimotor gating (prepulse inhibition of the acoustic startle response; PPI) and several tests thought to reflect anxiety: open field exposure, novel object exposure, elevated plus maze (EPM), and light/dark (LD) box. PPI was similar between groups, but indices of anxiety in the novel object and LD box tests were increased in Tfm males with no significant differences found in the open field or EPM. Since Tfm male mice have decreased circulating T, the same tests were conducted in mice that were gonadectomized (wt males) or sham-operated (Tfm males) as adults and supplemented with T or nothing (B). While T treatment reduced indices of anxiety in the novel object and LD box tests in wt males, it was ineffective in Tfm males. Increased indices of anxiety in Tfm males appear to be related to hyper-activation of the hypothalamic–pituitary–adrenal axis since levels of the stress hormone corticosterone were elevated in Tfm males compared to wt males at baseline and at several time points after exposure to a novel object. These findings demonstrate that ARs influence anxiety and stress responses in mice.

Keywords
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, , , ,