Article ID Journal Published Year Pages File Type
324031 Hormones and Behavior 2011 7 Pages PDF
Abstract

When ovariectomized Fischer female rats are hormonally primed with 10 μg estradiol benzoate, a 5 min restraint experience rapidly inhibits lordosis behavior. Addition of progesterone to the hormonal priming prevents this restraint-induced inhibition. In prior work, we reported evidence that progesterone receptors (PR) may contribute to this protective effect of progesterone. In the current manuscript, we provide evidence that progesterone metabolites may also contribute to progesterone's ability to reduce the effects of restraint. Ovariectomized female rats were hormonally primed with 10 μg estradiol benzoate followed 2 days later with 4.0 mg/kg of the progesterone metabolite, allopregnanolone. Allopregnanolone, administered either 4 h or 2 h before the restraint experience, was as effective as progesterone in reducing the lordosis-inhibitory effects of restraint. In the second experiment, progesterone metabolism was blocked with 50 mg/kg of the 5α-reductase inhibitor, finasteride. Surprisingly, finasteride did not prevent progesterone from reducing the effects of restraint. In a third experiment, we tested the possibility that allopregnanolone acted through metabolism to dihydroprogesterone. Rats were treated with allopregnanolone or with allopregnanolone plus the 3α-hydroxysteroid dehydrogenase inhibitor, indomethacin. Indomethacin did not prevent allopregnanolone from reducing the effects of restraint. Mechanisms are discussed whereby cross-talk between PR-mediated and metabolite-mediated events may converge in producing progesterone's attenuation of the effect of restraint.

Research highlights► Progesterone protects against the lordosis-inhibiting effects of a 5 min restraint experience. ► Allopregnanolone substitutes for progesterone in protecting against the effects of the restraint. ► Prevention of progesterone metabolism with finasteride does not reduce progesterone's protective effects against restraint.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, , , , , ,