Article ID Journal Published Year Pages File Type
328683 Neurobiology of Aging 2010 14 Pages PDF
Abstract

Although memory impairments are a hallmark of aging, the degree of deficit varies across animal models, and is likely to reflect different states of deterioration in metabolic and endocrinological properties. This study investigated memory-related processes in young (3–4 months) and old (24 months) Sprague–Dawley rats (SD), which develop age-linked pathologies such as obesity or insulin-resistance and Lou/C/Jall rats, which do not develop such impairments. In short- and long-term memory recognition tasks, old Lou/C/Jall rats were never impaired whereas old SD rats were deficient at 1 and 24 h latencies. The expression of N-methyl-d-aspartate receptors (NMDAR)-mediated synaptic plasticity in CA1 hippocampal networks shifted towards lower activity values in old Lou/C/Jall rats whereas long-term potentiation was impaired in age-matched SD rats. Age-related decrease in NR2A subunits occurred in both strains, extended to NR2B, NR1 and GluR1 subunits in older animals (28 months) but only in SD rats. Therefore, the Lou/C/Jall rats can be considered as a model of healthy aging, not only in terms of its preserved metabolism, but also in terms of cognition and synaptic plasticity.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , , , , , , , ,