Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
3297471 | Gastroenterology | 2008 | 11 Pages |
Abstract
Background & Aims: Prolyl and asparaginyl hydroxylases are key oxygen-sensing enzymes that confer hypoxic sensitivity to transcriptional regulatory pathways including the hypoxia inducible factor 1 (HIF-1) and nuclear factor-κB (NF-κB). Knockout of either HIF-1 or (IKKβ-dependent) NF-κB pathways in intestinal epithelial cells promotes inflammatory disease in murine models of colitis. Both HIF-1 and NF-κB pathways are repressed by the action of hydroxylases through the hydroxylation of key regulatory molecules. Methods: In this study we have investigated the effects of the hydroxylase inhibitor dimethyloxalylglycine (DMOG) on Caco-2 intestinal epithelial cells in vitro and in a dextran sodium sulfate-induced model of murine colitis. Results: DMOG induces both HIF-1 and NF-κB activity in cultured intestinal epithelial cells, and is profoundly protective in dextran-sodium sulfate colitis in a manner that is at least in part reflected by the development of an anti-apoptotic phenotype in intestinal epithelial cells, which we propose reduces epithelial barrier dysfunction. Conclusions: These data show that hydroxylase inhibitors such as DMOG represent a new strategy for the treatment of inflammatory bowel disease.
Keywords
Related Topics
Health Sciences
Medicine and Dentistry
Gastroenterology
Authors
Eoin P. Cummins, Fergal Seeballuck, Stephen J. Keely, Niamh E. Mangan, John J. Callanan, Padraic G. Fallon, Cormac T. Taylor,