Article ID Journal Published Year Pages File Type
331097 Neurobiology of Aging 2009 16 Pages PDF
Abstract

Adaptive metabolic changes associated with bacterial infections are likely to cause dehydration. Activation of hypothalamic neurons in the supraoptic nucleus that release anti-diuretic arginine-vasopressin in plasma provides water retention. Aging is characterized by arginine-vasopressin neuron hyper-activity and over-expression of pro-inflammatory cytokines like interleukin (IL)-6. Conversely, insulin-like growth factor (IGF)-I, known to exhibit anti-inflammatory properties, decreases with age. We compared activation of arginine-vasopressin neurons in adult (3 months) and aged (22 months) Wistar rats by measuring not only c-fos expression, plasma arginine-vasopressin and diuresis but also the expression of IL-6 and IGF-I in the supraoptic nuclei after intraperitoneal lipopolysaccharide injection. Aged rats displayed a heightened, shorter lasting activation of arginine-vasopressin neurons following lipopolysaccharide as compared to adults. IL-6 mRNA was 3-fold higher while IGF-I mRNA was 10-fold lower in aged than in adult rats. Brain pre-treatment with neutralizing anti-IL-6 antibodies or recombinant IGF-I in aged rats reversed lipopolysaccharide-induced anti-diuresis. These data extend the concept of neuroendocrine-immune interactions to the arginine-vasopressin neuronal system by establishing a relationship between brain IL-6/IGF-I balance and age-associated arginine-vasopressin neuronal dysfunction.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , , , , ,