Article ID Journal Published Year Pages File Type
3327684 The Journal of Molecular Diagnostics 2016 7 Pages PDF
Abstract

With the recent discovery of CALR mutations, >80% of patients with myeloproliferative neoplasms carry a phenotype-driving mutation. For JAK2 V617F, the most frequent mutation in myeloproliferative neoplasms, accurate determination of mutational loads is of interest at diagnosis, for phenotypic and prognostic purposes, and during follow-up for minimal residual disease assessment. We developed a digital PCR technique that allowed the accurate determination of CALR allelic burdens for the main mutations (types 1 and 2). Compared with the commonly used fluorescent PCR product analysis, digital PCR is more precise, reproducible, and accurate. Furthermore, this method reached a very high sensitivity. We detected at least 0.025% CALR mutants. It can thus be used for patient characterization at diagnosis and for minimal residual disease monitoring. When applied to patients with primary myelofibrosis who underwent hematopoietic stem cell transplant, the digital PCR detected low levels of minimal residual disease. After negativation of the mutational load in all patients, the disease reappeared at a low level in one patient, preceding hematologic relapse. In conclusion, digital PCR adapted to type 1 and 2 CALR mutations is an inexpensive, highly precise, and sensitive technique suitable for evaluation of myeloproliferative neoplasm patients during follow-up.

Related Topics
Health Sciences Medicine and Dentistry Health Informatics
Authors
, , , , , , , , , , ,