Article ID Journal Published Year Pages File Type
3336884 Transfusion Medicine Reviews 2008 14 Pages PDF
Abstract

Intravenous immunoglobulin (IVIg) has been used for more than 25 years to treat an ever-increasing number of autoimmune diseases including immune thrombocytopenic purpura. Although the exact mechanism of action of IVIg has remained elusive, many theories have been postulated, including mononuclear phagocytic system blockade/inhibition, autoantibody neutralization by anti-idiotype antibodies, pathogenic autoantibody clearance due to competitive inhibition of the neonatal immunoglobulin Fc receptor, cytokine modulation, complement neutralization, and immune complex formation leading to dendritic cell priming. Polyclonal anti-D immunoglobulin is a polyclonal IVIg product enriched for antibodies directed to the RhD antigen on red blood cells and that has also been successfully used to treat immune thrombocytopenia in RhD+ patients. The primary theory to explain polyclonal anti-D immunoglobulin function has classically been mononuclear phagocytic system blockade, although modulation of Fcγ receptor expression and/or immunomodulation may also play a role. Work using a murine model of immune thrombocytopenic purpura to further our understanding of the mechanism of action of these 2 therapeutic agents is a focus of this article.

Related Topics
Health Sciences Medicine and Dentistry Hematology
Authors
, ,