Article ID Journal Published Year Pages File Type
3342683 Autoimmunity Reviews 2006 5 Pages PDF
Abstract

Consistent with the common embryonic origin of liver and pancreas as well the similar glucose-sensing systems in hepatocytes and pancreatic β-cells, it should not be surprising that liver stem cells/hepatocytes can transdifferentiate into insulin-producing cells under high-glucose culture conditions or by genetic reprogramming. Persistent expression of the pancreatic duodenal homeobox-1 (Pdx1) transcription factor or its super-active form Pdx1-VP16 fusion protein in hepatic cells reprograms these cells into pancreatic β-cell precursors. In vitro culture at elevated glucose concentrations or in vivo exposure to a hyperglycemia are required for further differentiation and maturation of liver-derived pancreatic β-cell precursor into functional insulin-producing pancreatic β-like cells. Under appropriate conditions, multiple pancreatic transcription factors can work in concert to reprogram liver stem/adult liver cells into functional insulin-producing cells. If such autologous liver-derived insulin-producing cells can be made to escape the type 1 diabetes-associated autoimmunity, they may serve as a valuable cell source for future cell replacement therapy without the need for life-long immunosuppression.

Related Topics
Life Sciences Immunology and Microbiology Immunology
Authors
,