Article ID Journal Published Year Pages File Type
334626 Psychiatry Research: Neuroimaging 2008 9 Pages PDF
Abstract

Thalamic alterations have been reported in autism, but the relationships between these abnormalities and clinical symptoms, specifically sensory features, have not been elucidated. The goal of this investigation is to combine two neuroimaging methods to examine further the pathophysiology of thalamic anomalies in autism and to identify any association with sensory deficits. Structural MRI and multi-voxel, short echo-time proton magnetic resonance spectroscopy (1H MRS) measurements were collected from 18 male children with autism and 16 healthy children. Anatomical measurements of thalamic nuclei and absolute concentration levels of key 1H MRS metabolites were obtained. Sensory abnormalities were assessed using a sensory profile questionnaire. Lower levels of N-acetylaspartate (NAA), phosphocreatine and creatine, and choline-containing metabolites were observed on the left side in the autism group compared with controls. No differences in thalamic volumes were observed between the two groups. Relationships, although limited, were observed between measures of sensory abnormalities and 1H MRS metabolites. Findings from this study support the role of the thalamus in the pathophysiology of autism and more specifically in the sensory abnormalities observed in this disorder. Further investigations of this structure are warranted, since it plays an important role in information processing as part of the cortico–thalamo–cortical pathways.

Related Topics
Life Sciences Neuroscience Biological Psychiatry
Authors
, , , , , , , ,