Article ID Journal Published Year Pages File Type
3348759 Diagnostic Microbiology and Infectious Disease 2006 8 Pages PDF
Abstract

A multiplexed, 4-target real-time polymerase chain reaction (PCR) assay for the detection and characterization of Yersinia pestis was designed and optimized for respiratory and environmental samples. The target sequences include the entF3 gene of the chromosome, pla (plasminogen activator) on the pPCP1 virulence plasmid, caf1 (F1 capsule antigen) on the pMT1 virulence plasmid, and a region located on the pCD1 plasmid. The sensitivity of this assay was determined to be less than 85 CFU per reaction for each specimen type analyzed. This assay was also determined to be 100% specific with strains of Y. pestis, 9 additional Yersinia species, and related enteric and respiratory organisms. The results show that this multiplex real-time PCR assay using TaqMan® (Roche Molecular Systems, Inc., Alameda, CA) chemistry is sensitive and specific, requires minimal sample input, and can yield results in approximately 4 h. This assay is the first 4-target multiplex real-time PCR assay for Y. pestis in which detection and virulence assessment of Y. pestis can occur in one reaction, from clinical and environmental samples.

Related Topics
Life Sciences Immunology and Microbiology Applied Microbiology and Biotechnology
Authors
, , , , , , ,