Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
3352216 | Human Immunology | 2007 | 15 Pages |
Abstract
We examined the in vitro inhibition of human monocyte-derived dendritic cells (DC) maturation via NF-κB blockade on T-cell allostimulation, cytokine production, and regulatory T-cell generation. DC were generated from CD14+ monocytes isolated from peripheral blood using GM-CSF and IL-4 for differentiation and TNF-α, IL-1β, and PGE2 as maturational stimuli with or without the NF-κB inhibitors, BAY 11-7082 (BAY-DC) or Aspirin (ASA-DC). Stimulator and responder cells were one versus two HLA-DR mismatched in direct versus indirect presentation assays. Both BAY-DC and ASA-DC expressed high levels of HLA-DR and CD86 but always expressed less CD40 compared with controls. Some experiments showed slightly lower levels of CD80. Both BAY- and ASA- allogeneic DC and autologous alloantigen pulsed DC were weaker stimulators of T cells (by MLR) compared with controls, and there was reduced IL-2 and IFN-γ production by T cells stimulated with BAY-DC or ASA-DC (by ELISPOT) (more marked results were always observed with ASA-treated DC). In addition, NF-κB blockade of DC maturation caused the generation of T cells with regulatory function (T regs) but only when T cells were stimulated by either allogeneic (direct presentation) or alloantigen pulsed autologous DC (indirect presentation) with one HLA-DR mismatch and not with two HLA-DR mismatches (either direct or indirect presentation). However, the T regs generated from these ASA-DC showed similar FoxP3 mRNA expression to those from nontreated DC. Extension of this study to human organ transplantation suggests potential therapies using one DR-matched NF-κB blocked DC to help generate clinical tolerance.
Related Topics
Life Sciences
Immunology and Microbiology
Immunology
Authors
Ana Hernandez, Melissa Burger, Bonnie B. Blomberg, William A. Ross, Jeffrey J. Gaynor, Inna Lindner, Robert Cirocco, James M. Mathew, Manuel Carreno, Yidi Jin, Kelvin P. Lee, Violet Esquenazi, Joshua Miller,