Article ID Journal Published Year Pages File Type
3352908 Immunity 2015 11 Pages PDF
Abstract

•High amounts of LL37-mtDNA complex were found in atherosclerotic plasma and plaque•LL-37-mtDNA complex escapes from DNase II degradation and autophagy•Cramp-mtDNA complex aggravates atherosclerotic lesion formation in Apoe−/− mice•LL-37-mtDNA complex represents promising therapeutic target for atherosclerosis

SummaryAtherosclerosis is a chronic inflammatory disease of arterial wall. Mitochondrial DNA (mtDNA) and human antimicrobial peptide LL-37 (Cramp in mice) are involved in atherosclerosis. Recently, mtDNA has been found to escape from autophagy and cause inflammation. Normally, mtDNA as an inflammatogenic factor cannot escape from autophagy and degradation by DNase II. In this study, we found elevated amounts of LL37-mtDNA complex in atherosclerotic plasma and plaques. The complex was resistant to DNase II degradation and escaped from autophagic recognition, leading to activation of Toll-like receptor 9 (TLR9)-mediated inflammatory responses. Mouse model studies indicated that Cramp-mtDNA complex aggravated atherosclerotic lesion formation in apolipoprotein E-deficient mice and antibody treatment against the complex alleviated the lesion. These findings suggest that the LL-37-mtDNA complex acts as a key mediator of atherosclerosis formation, and thus represents a promising therapeutic target.

Graphical AbstractFigure optionsDownload full-size imageDownload high-quality image (242 K)Download as PowerPoint slide

Related Topics
Life Sciences Immunology and Microbiology Immunology
Authors
, , , , , , , , , ,