Article ID Journal Published Year Pages File Type
3379629 Osteoarthritis and Cartilage 2013 10 Pages PDF
Abstract

SummaryObjectiveTo investigate the inhibitory effects and the regulatory mechanisms of histone deacetylase (HDAC) inhibitors on mechanical stress-induced gene expression of runt-related transcription factor (RUNX)-2 and adisintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-5 in human chondrocytes.MethodsHuman chondrocytes were seeded in stretch chambers at a concentration of 5 × 104 cells/chamber. Cells were pre-incubated with or without HDAC inhibitors (MS-275 or trichostatin A; TSA) for 12 h, followed by uniaxial cyclic tensile strain (CTS) (0.5 Hz, 10% elongation), which was applied for 30 min using the ST-140-10 system (STREX, Osaka, Japan). Total RNA was extracted and the expression of RUNX-2, ADAMTS-5, matrix metalloproteinase (MMP)-3, and MMP-13 at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The activation of diverse mitogen-activated protein kinase (MAPK) pathways with or without HDAC inhibitors during CTS was examined by western blotting.ResultsHDAC inhibitors (TSA: 10 nM, MS-275: 100 nM) suppressed CTS-induced expression of RUNX-2, ADAMTS-5, and MMP-3 at both the mRNA and protein levels within 1 h. CTS-induced activation of p38 MAPK (p38), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) MAPKs was downregulated by both HDAC inhibitors.ConclusionThe CTS-induced expression of RUNX-2 and ADAMTS-5 was suppressed by HDAC inhibitors via the inhibition of the MAPK pathway activation in human chondrocytes. The results of the current study suggested a novel therapeutic role for HDAC inhibitors against degenerative joint disease such as osteoarthritis.

Related Topics
Health Sciences Medicine and Dentistry Immunology, Allergology and Rheumatology
Authors
, , , , , ,