Article ID Journal Published Year Pages File Type
3391400 Seminars in Immunology 2013 9 Pages PDF
Abstract

•System biology approaches toward understanding immune dysfunction in HIV infection.•Transcriptional programs regulating anergy and cell survival in chronic HIV infection.•PD-1 expression correlates with both functional and dysfunctional immune responses.•Blocking PD-1 and other immune checkpoints in HIV potentiates CD8 effector function.•New computational methods are needed to model regulation of transcriptional networks.

In the majority of HIV-1 infected individuals, the adaptive immune response drives virus escape resulting in persistent viremia and a lack of immune-mediated control. The expression of negative regulatory molecules such as PD-1 during chronic HIV infection provides a useful marker to differentiate functional memory T cell subsets and the frequency of T cells with an exhausted phenotype. In addition, cell-based measurements of virus persistence equate with activation markers and the frequency of CD4 T cells expressing PD-1. High-level expression of PD-1 and its ligands PD-L1 and PD-L2 are found on hematopoietic and non-hematopoietic cells, and are upregulated by chronic antigen stimulation, Type 1 and Type II interferons (IFNs), and homeostatic cytokines. In HIV infected subjects, PD-1 levels on CD4 and CD8 T cells continue to remain high following combination anti-retroviral therapy (cART). System biology approaches have begun to elucidate signal transduction pathways regulated by PD-1 expression in CD4 and CD8 T cell subsets that become dysfunctional through chronic TCR activation and PD-1 signaling. In this review, we summarize our current understanding of transcriptional signatures and signal transduction pathways associated with immune exhaustion with a focus on recent work in our laboratory characterizing the role of PD-1 in T cell dysfunction and HIV pathogenesis. We also highlight the therapeutic potential of blocking PD-1–PD-L1 and other immune checkpoints for activating potent cellular immune responses against chronic viral infections and cancer.

Related Topics
Life Sciences Immunology and Microbiology Immunology
Authors
, , , , , ,