Article ID Journal Published Year Pages File Type
3392685 Transplant Immunology 2007 9 Pages PDF
Abstract

The interleukin-2 receptor alpha chain (IL-2Ra, CD25) plays a major part in shaping the dynamics of T cell populations following immune activation, due to its role in T cell proliferation and survival. Strategies to blunt the effector responses in transplantation have been developed by devising pharmaceutical agents to block the IL-2 pathways. However, such strategies could adversely affect the CD25+FOXP3+T regulatory (T reg) populations which also rely on intereukin-2 signaling for survival. The present study shows that a cohort of heart allograft recipients treated with Daclizumab (a humanized anti-CD25 antibody) display FOXP3 expression patterns consistent with functional T regulatory cell populations. High levels of FOXP3 were observed to correlate with lower incidence of and recovery from acute rejection, as well as lower levels of anti-donor HLA antibody production. Therefore, T reg populations appear fully functional in patients treated with Daclizumab, even when 5 doses were administered. By comparison, patients treated with fewer doses or no Daclizumab had a higher incidence of acute rejection, antibody production and graft failure. Therefore, our data indicates that Daclizumab treatment does not interfere with the generation of regulatory T cells and has a beneficial effect on heart allograft survival.

Related Topics
Life Sciences Immunology and Microbiology Immunology
Authors
, , , , , , , , , , , , , , ,