Article ID Journal Published Year Pages File Type
3404929 International Journal of Mycobacteriology 2016 7 Pages PDF
Abstract

Objective/backgroundGuidelines for the manipulation of Mycobacterium tuberculosis (MTB) cultures require a Biosafety Level 3 (BSL-3) infrastructure and accompanying code of conduct. In this study, we aimed to validate and apply detection methods for viable mycobacteria from surfaces in a BSL-3 MTB laboratory.MethodsWe evaluated phenotypic (Replicate Organism Detection and Counting [RODAC] plates) and molecular (propidium monoazide [PMA]-based polymerase chain reaction [PCR]) approaches for the detection of viable mycobacteria, as well as the effect of 70% ethanol applied for 5 min for disinfection against mycobacteria. For validation of the method, recovery of serial dilutions of Mycobacterium bovis bacillus Calmette–Guérin from glass slides was measured. Subsequently, we stamped surfaces in and around the biosafety cabinet (BSC) after different technicians had manipulated high bacterial load suspensions for routine drug-susceptibility testing in a Class II BSC.ResultsRODAC stamping could detect as few as three bacteria on slides stamped either 5 min or 60 min after inoculation. PMA-based PCR, tested in parallel, did not pass validation. Mycobacteria were still detected after 5-min disinfection with ethanol 70%. In the BSL-3, from 201 RODAC-stamped surfaces, MTB was detected in four: three inside a BSC—on a tube cap and on an operator’s gloves—and one outside, on an operator’s gown.ConclusionRODAC plates detect mycobacteria at low numbers of microorganisms. In addition, this method allowed us to show that 70% ethanol does not reliably kill mycobacteria when applied for 5 min to a dried surface, and that MTB bacilli may arrive outside a Class II BSC during routine practice, although the route could not be documented.

Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , , , , , ,