Article ID Journal Published Year Pages File Type
3406768 Journal of Virological Methods 2012 7 Pages PDF
Abstract

The present study describes the development of a SYBR Green based real-time polymerase chain reaction (real-time PCR) for detection and quantitation of all fowl adenovirus (FAdV) species. Primers were designed based on conserved nucleotide sequences within the 52K gene. Ten-fold serial dilutions of a vector DNA were used as standard for quantitation. The real-time PCR had an efficiency of 98%, a regression squared value of 0.999 and showed a range of 6.73–6.73 × 108 copies of FAdV DNA per reaction. The assay was highly specific for FAdVs and an exact quantitation of all 5 FAdV species (FAdV-A to FAdV-E) could be demonstrated. It was shown, that twelve FAdV serotypes (FAdV-1 to 8a, and 8b to 11) were detectable and quantifiable. Other viral genomes as well as uninfected chicken embryo liver (CEL) cells did not produce positive signal. Cloacal swabs were taken during the animal experiment, which was performed with all FAdV species. Shedding of FAdVs was investigated in cell culture, by conventional PCR and by the developed real-time PCR. The real-time PCR was found more sensitive than cell culture and conventional PCR. Detection and quantitation of FAdVs in different type of samples was possible by the new real-time PCR.

► A real time PCR suitable for all 5 species of FAdV was developed. ► Sensitivity for detecting FAdV will be increased with this technology. ► Cloacal swabs and tissues samples can be processed to determine viral load.

Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , , , ,