Article ID Journal Published Year Pages File Type
3407984 Journal of Virological Methods 2007 8 Pages PDF
Abstract

This report describes the generation of novel encapsidated RNA particles and their evaluation as in-tube internal controls in diagnostic real-time reverse-transcription PCR (rRT-PCR) assays for the detection of RNA viruses. A cassette containing sequences of 2 diagnostic primer sets for foot-and-mouth disease virus (FMDV) and a set for swine vesicular disease virus (SVDV) was engineered into a full-length cDNA clone containing the RNA-2 segment of Cowpea Mosaic Virus (CPMV). After co-inoculation with a plasmid that expressed CPMV RNA-1, recombinant virus particles were rescued from cowpea plants (Vigna unguiculata). RNA contained in these particles was amplified in diagnostic rRT-PCR assays used for detection of FMDV and SVDV. Amplification of these internal controls was used to confirm that rRT-PCR inhibitors were absent from clinical samples, thereby verifying negative assay results. The recombinant CPMVs did not reduce the analytical sensitivity of the rRT-PCRs when amplification of the insert was performed in the same tube as the diagnostic target. This system provides an attractive solution to the production of internal controls for rRT-PCR assays since CPMV grows to high yields in plants, the particles are thermostable, RNase resistant and simple purification of RNA-2 containing capsids yields a preparation which is non-infectious.

Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , , , , , , ,