Article ID Journal Published Year Pages File Type
3408596 Journal of Virological Methods 2006 6 Pages PDF
Abstract

The objective of the present study was to develop a multiplex polymerase chain reaction (PCR) method for differential detection of turkey coronavirus (TCoV), infectious bronchitis coronavirus (IBV), and bovine coronavirus (BCoV). Primers were designed from conserved or variable regions of nucleocapsid (N) or spike (S) protein gene among TCoV, IBV, and BCoV and used in the same PCR reaction. Reverse transcription followed by the PCR reaction was used to amplify a portion of N or S gene of the corresponding coronaviruses. The PCR products were detected on agarose gel stained with ethidium bromide. Two PCR products, a 356-bp band corresponding to N gene and a 727-bp band corresponding to S gene, were obtained for TCoV isolates. In contrast, one PCR product of 356 bp corresponding to a fragment of N gene was obtained for IBV strains and one PCR product of 568 bp corresponding to a fragment of S gene was obtained for BCoV. There were no PCR products with the same primers for Newcastle disease virus, Marek's disease virus, turkey pox virus, pigeon pox virus, fowl pox virus, reovirus, infectious bursal disease virus, enterovirus, astrovirus, Salmonella enterica, Escherichia coli, and Mycoplasma gallisepticum. Performance of the assay with serially diluted RNA demonstrated that the multiplex PCR could detect 4.8 × 10−3 μg of TCoV RNA, 4.6 × 10−4 μg of IBV RNA, and 8.0 × 10−2 μg of BCoV RNA. These results indicated that the multiplex PCR as established in the present study is a rapid, sensitive, and specific method for differential detection of TCoV, IBV, and BCoV in a single PCR reaction.

Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , , , , ,