Article ID Journal Published Year Pages File Type
3414789 Microbes and Infection 2014 8 Pages PDF
Abstract

Overlapping peptides of different lengths from a certain immunodominant region can be presented by the same HLA class I molecule and elicit different T cell responses. However, how peptide-length specificity of antigen-specific CD8+ T lymphocytes influence cross-reactivity profiles of these cells remains elusive. This question is particularly important in the face of highly variable pathogens such as HIV-1. Here, we examined this problem by using HLA-B*35:01-restricted CD8+ T lymphocytes specific for Nef epitopes, i.e., RY11 (RPQVPLRPMTY), VY8 (VPLRPMTY), and RM9 (RPQVPLRPM), in which VY8 and RM9 were contained entirely within RY11, in combination with a T cell receptor (TCR) reconstruction system as well as HLA-B35 tetramers and a set of a single-variant peptide library. The TCR reactivity toward the peptide-length variants was classified into three types: mutually exclusive specificity toward (1) RY11 or (2) VY8 and (3) cross-recognition toward RM9 and RY11. TCR cross-reactivity toward variant peptides was similar within the same peptide-length reactivity type but was markedly different between the types. Thus, TCRs showing similar peptide-length reactivity have shared peptide recognition footprints and thereby similar weakness to antigenic variations, providing us with further insight into the antiviral vaccine design.

Related Topics
Life Sciences Immunology and Microbiology Immunology
Authors
, , , ,