Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
3415524 | Microbes and Infection | 2007 | 8 Pages |
Abstract
A Cu,Zn-superoxide dismutase has been characterized from Scedosporium apiospermum, a fungus which often colonizes the respiratory tract of patients with cystic fibrosis. Enzyme production was stimulated by iron starvation. Purification was achieved from mycelial extract from 7-day-old cultures on Amberlite XAD-16. The purified enzyme presented a relative molecular mass of 16.4 kDa under reducing conditions and was inhibited by potassium cyanide and diethyldithiocarbamate, which are two known inhibitors of Cu,Zn-SODs. Its optimum pH was 7.0 and the enzyme retained full activity after pretreatment at temperatures up to 50 °C. Moreover, a 450-bp fragment of the gene encoding the enzyme was amplified by PCR using degenerate primers designed from sequence alignment of four fungal Cu,Zn-SODs. Sequence data from this fragment allowed us to design primers which were used to amplify by walking-PCR the flanking regions of the known fragment. SaSODC gene (890 bp) corresponded to a 154 amino acid polypeptide with a predicted molecular mass of 15.9 kDa. A database search for sequence homology revealed for the deduced amino acid sequence 72 and 83% identity rate with Cu,Zn-SODs from Aspergillus fumigatus and Neurospora crassa, respectively. To our knowledge, this enzyme is the first putative virulence factor of S. apiospermum to be characterized.
Related Topics
Life Sciences
Immunology and Microbiology
Immunology
Authors
Osana C. Lima, Gérald Larcher, Patrick Vandeputte, Anne Lebouil, Dominique Chabasse, Philippe Simoneau, Jean-Philippe Bouchara,