Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
3425102 | Virology | 2010 | 9 Pages |
Many large double-stranded DNA viruses employ high force-generating ATP-driven molecular motors to package to high density their genomes into empty procapsids. Bacteriophage T4 DNA translocation is driven by a two-component motor consisting of the procapsid portal docked with a packaging terminase-ATPase. Fluorescence resonance energy transfer and fluorescence correlation spectroscopic (FRET-FCS) studies of a branched (Y-junction) DNA substrate with a procapsid-anchoring leader segment and a single dye molecule situated at the junction point reveal that the “Y-DNA” stalls in proximity to the procapsid portal fused to GFP. Comparable structure Y-DNA substrates containing energy transfer dye pairs in the Y-stem separated by 10 or 14 base pairs reveal that B-form DNA is locally compressed 22–24% by the linear force of the packaging motor. Torsional compression of duplex DNA is thus implicated in the mechanism of DNA translocation.