Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
3426444 | Virology | 2008 | 15 Pages |
Hepatitis C virus (HCV) infection is frequently associated with the development of hepatocellular carcinomas and non-Hodgkin's B-cell lymphomas. Nonstructural protein 3 (NS3) of HCV possesses serine protease, nucleoside triphosphatase, and helicase activities, while NS4A functions as a cofactor for the NS3 serine protease. Here, we show that HCV NS3/4A interacts with the ATM (ataxia-telangiectasia mutated), a cellular protein essential for cellular response to irradiation. The expression of NS3/4A caused cytoplasmic translocation of either endogenous or exogenous ATM and delayed dephosphorylation of the phosphorylated ATM and γ-H2AX following ionizing irradiation. As a result, the irradiation-induced γ-H2AX foci persisted longer in the NS3/4A-expressing cells. Furthermore, these cells showed increased comet tail moment in single-cell electrophoresis assay, indicating increased double-strand DNA breaks. The cells harboring an HCV replicon also exhibited cytoplasmic localization of ATM and increased sensitivity to irradiation. These results demonstrate that NS3/4A impairs the efficiency of DNA repair by interacting with ATM and renders the cells more sensitive to DNA damage. This effect may contribute to HCV oncogenesis.