Article ID Journal Published Year Pages File Type
3428258 Virus Research 2015 8 Pages PDF
Abstract

•Phylogenetic analysis of FeLV gag genes exhibits genetic diversity.•Genetic diversity arises from recombination between endogenous and exogenous genes.•Gag recombination patterns similar within genotypes and may affect transmission.•Results important in understanding the phylogeny of gammaretroviruses.

Feline leukemia virus (FeLV) belongs to the Gammaretrovirus genus and is horizontally transmitted among cats. FeLV is known to undergo recombination with endogenous retroviruses already present in the host during FeLV-subgroup A infection. Such recombinant FeLVs, designated FeLV-subgroup B or FeLV-subgroup D, can be generated by transduced endogenous retroviral env sequences encoding the viral envelope. These recombinant viruses have biologically distinct properties and may mediate different disease outcomes. The generation of such recombinant viruses resulted in structural diversity of the FeLV particle and genetic diversity of the virus itself. FeLV env diversity through mutation and recombination has been studied, while gag diversity and its possible effects are less well understood. In this study, we investigated recombination events in the gag genes of FeLVs isolated from naturally infected cats and reference isolates. Recombination and phylogenetic analyses indicated that the gag genes often contain endogenous FeLV sequences and were occasionally replaced by entire endogenous FeLV gag genes. Phylogenetic reconstructions of FeLV gag sequences allowed for classification into three distinct clusters, similar to those previously established for the env gene. Analysis of the recombination junctions in FeLV gag indicated that these variants have similar recombination patterns within the same genotypes, indicating that the recombinant viruses were horizontally transmitted among cats. It remains to be investigated whether the recombinant sequences affect the molecular mechanism of FeLV transmission. These findings extend our understanding of gammaretrovirus evolutionary patterns in the field.

Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , , , , , ,