Article ID Journal Published Year Pages File Type
3430655 Virus Research 2007 7 Pages PDF
Abstract

Murine cytomegalovirus (MCMV) brain infection induces a transient increase in chemokine production, which precedes the infiltration of CD3+ lymphocytes. In this study, we hypothesized that an absence of anti-inflammatory cytokines would result in sustained proinflammatory neuroimmune responses. Direct intracerebroventricular injection of MCMV into IL-10 knockout (KO) mice produced an unexpected result: while wild-type animals controlled MCMV, the infection was lethal in IL-10 KO animals. Identical infection of IL-4 KO animals did not produce lethal disease. To further characterize the role of IL-10, infected brain tissue from both wild-type and IL-10 KO animals was assessed for cytokine and chemokine levels, as well as viral gene expression. These data show vastly elevated levels of interferon (IFN)-γ, and the IFN-γ-inducible chemokines CXCL9 and CXCL10, as well as IL-6 in brain homogenates obtained from IL-10 KO animals. However, MCMV viral load, glycoprotein B mRNA levels, and titers of infectious virus were similar in both IL-10 KO and wild-type animals. Separation of cells isolated from murine brain tissue into distinct populations using FACS, along with subsequent quantitative RT real-time PCR, showed that brain-infiltrating CD45(hi)/CD11b(−) and CD45(hi)/CD11b(int) were the cellular source of IL-10 in the brain. Taken together, these data demonstrate that MCMV brain infection of IL-10-deficient mice causes lethal disease, which occurs in the presence of a dysregulated IFN-γ-mediated neuroimmune response.

Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , , , , ,