Article ID Journal Published Year Pages File Type
3431053 Virus Research 2006 6 Pages PDF
Abstract

The mitochondrial calcium and downstream proline-rich tyrosine kinase-2 (PyK2) signaling pathway are critical to hepatitis B virus (HBV) replication, and the endoplasmic reticulum (ER) plays an important role in intracellular calcium regulation. To investigate the role of ER in HBV replication, the HBV genome transfected HepG2.2.15 cells were treated by cyclosporine A (CsA), cyclopiazonic acid (CPA), ryanodine and U73122, which are all specific blockers of calcium channels located in either ER or mitochondria. The HBV replication level was evaluated by two methods: slot blot hybridization analysis of intracellular HBV DNA and real-time polymerase chain reaction (PCR) analysis of secreted HBV DNA in supernatant; the activation of PyK2 kinase was detected by Western blot analysis. Results indicated that the HBV replication was inhibited when mitochondrial permeability transition pore, ER Ca2+-ATPase and ER inositol 1,4,5-trisphosphate receptor (IP3R) were blocked by CsA, CPA and U73122, respectively; but not inhibited when ER ryanodine receptor was blocked by ryanodine. The PyK2 phosphorylation level declined after treatment of 2 μg/ml CsA, 5 μM CPA and 25 μM U73122, but not changed apparently after 50 μM ryanodine treatment. Compared with monotreatment, a more powerful inhibitory effect was achieved when the CsA, CPA and U73122 were combined used in twosome or triple manner, while the HBV replication level did not change apparently when ryanodine combined with CsA, CPA or U73122. In conclusion, besides the mitochondria, the ER also participates in the HBV replication through calcium-PyK2 signaling pathway; the calcium channels of ER Ca2+-ATPase and ER IP3R are responsible for this role; during this complicated process, an interaction between ER and mitochondria maybe involved.

Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , , ,