Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
3460764 | Clinics in Laboratory Medicine | 2007 | 9 Pages |
With a focus on low-cost and low-power consumption, a miniature laser-induced fluorescence (LIF) detection system was assembled using a 635 nm red diode laser as the excitation source and a photodiode element coupled with an operational amplifier for signal collection. The primary elements of the miniature system, namely the laser and the detection system, cost a combined $70 and required only 270 mW of power for operation. When compared to conventional systems assembled using an argon-ion laser source and a photomultiplier tube, this represents a 98% decrease in the cost, and greater than 5000-fold decrease in power consumption. Quantitation of DNA on microdevices using the miniature LIF detection system was also performed with an error of less than 15%. This detection system is a step in the direction of commercializing microfluidic instrumentation by reducing the cost and power required for operation.