Article ID Journal Published Year Pages File Type
3479876 Journal of the Formosan Medical Association 2010 9 Pages PDF
Abstract

Background/PurposeThe S100 protein is part of a Ca2+ binding protein superfamily that contains an EF hand domain, which is involved in the onset and progression of many human diseases, especially the proliferation and metastasis of tumors. S100A13, a new member of the S100 protein family, is a requisite component of the fibroblast growth factor-1 (FGF-1) protein release complex, and is involved in human tumorigenesis by interacting with FGF-1 and interleukin-1. In this study, experiments were designed to determine the direct role of S100A13 in FGF-1 protein release and transportation.MethodsWe successfully constructed the lentiviral vectors containing shRNA targeting the human S100A13 gene. Human umbilical vein endothelial cells (HUVECs) were transfected with lentiviral RNAi vectors for S100A13. Then immunofluorescence staining, real-time quantitative polymerase chain reaction and Western blotting were used to detect the inhibition efficiency of the vectors and to monitor the release and transportation of FGF-1 protein.ResultsLentiviral RNAi vectors induced suppression efficiency of S100A13 gene by 90% in HUVECs. FGF-1 protein was found to be transported from the cytoplasm to the cell membrane, and then released from cells when HUVECs were deprived of serum. The release of FGF-1 protein was blocked by the downregulation of S100A13, but the transportation was not affected, suggesting that S100A13 is a key cargo protein for FGF-1 release.ConclusionS100A13 promotes the release of FGF-1 protein, but does not affect the transportation of FGF-1 protein in HUVECs.

Related Topics
Health Sciences Medicine and Dentistry Medicine and Dentistry (General)