Article ID Journal Published Year Pages File Type
3841083 Translational Research 2010 8 Pages PDF
Abstract

Susceptibility to osteoporosis seems to be influenced genetically. Previous studies on the effects of genetic polymorphisms on bone mineral density (BMD) showed controversial results. Vitamin K hydrochinon is an important cofactor for gamma carboxylation of osteocalcin. The reduction of vitamin K to vitamin K hydrochinon depends on the vitamin K epoxide reductase complex subunit 1 (VKORC1). We evaluated the impact of polymorphisms in VKORC1 on BMD and fractures. In this single-center study, 184 individuals (141 female subjects and 43 male subjects, mean age: 63.2 ± 14.3 years) were recruited. In all, 149 of 184 could be genotyped by allele-specific polymerase chain reaction (PCR) for the VKORC1 variants 3673G>A or 9041G>A. The genotypes were correlated with clinical parameters. Vitamin K1 concentrations were determined by high-performance liquid chromatography (HPLC); carboxylated (GlaOC) and undercarboxylated osteocalcin (GluOC) was determined by enzyme-linked immunosorbent assays (ELISAs). The 9041 GG and GA genotypes were significantly more frequent in patients with low BMD (P = 0.012). Thus, carriers of at least 1 G-allele seem to have a higher risk for low BMD. No statistically significant association was found for the 3673 G>A variant and BMD. GluOC concentrations were higher in patients who carried a 3673 GA and GG genotypes (P = 0.07). For both variants, no association with fractures could be observed. In our cohort, a genetic variation in the 3′-region of the VKORC1 gene (9041 AG and GG) was associated significantly with low BMD. This finding suggests that VKORC1 may play a role in osteoporosis. The results of our pilot study should be confirmed as our findings may be important for treatment decisions.

Related Topics
Health Sciences Medicine and Dentistry Medicine and Dentistry (General)
Authors
, , , , , ,