Article ID Journal Published Year Pages File Type
3896630 Seminars in Nephrology 2014 7 Pages PDF
Abstract

SummaryHyperkalemia commonly limits optimizing treatment to slow stage 3 or higher chronic kidney disease (CKD) progression. The risk of hyperkalemia is linked to dietary potassium intake, level of kidney function, concomitant diseases that may affect potassium balance such as diabetes, and use of medications that influence potassium excretion. The risk predictors for developing hyperkalemia are an estimated glomerular filtration rate of less than 45 mL/min/1.73 m2 and a serum potassium level greater than 4.5 mEq/L in the absence of blockers of the renin-angiotensin-aldosterone system (RAAS). Generally, monotherapy with RAAS blockers does not increase risk substantially unless hypotension or volume depletion occur. Dual RAAS blockade involving any combination of an angiotensin-converting enzyme inhibitor, angiotensin-receptor blocker, renin inhibition, or aldosterone-receptor blocker markedly increases the risk of hyperkalemia in patients with stage 3 or higher CKD. Moreover, dual RAAS blockade further reduces albuminuria by 25% to 30% compared with monotherapy, it has failed to show a benefit on CKD progression or cardiovascular outcome, and thus is not indicated in such patients because of its marked increase in hyperkalemia potential. Although sodium polystyrene resins exist to manage hyperkalemia in patients requiring therapy that increases serum potassium levels, they are not well tolerated. Newer, more predictable, better-tolerated polymers to bind potassium are on the horizon and may be approved within the next 1 to 2 years.

Related Topics
Health Sciences Medicine and Dentistry Nephrology
Authors
, ,