Article ID Journal Published Year Pages File Type
3926096 European Urology 2007 9 Pages PDF
Abstract

ObjectivesTissue engineering is very promising in bladder reconstruction. However, one of the main problems is to limit the development of ischaemic fibrosis during tissue maturation. We describe a model using the omentum as an in vivo bioreactor for a previously seeded scaffold.MethodsBladder biopsies were taken from five female pigs, from which both urothelial and smooth muscle cells cultures were made. These cultured cells were used to seed a sphere-shaped small intestinal submucosa (SIS) matrix, which was transferred into the omentum after 3 wk of cell growth. The grafts were harvested 3 wk later and histologic, immunohistochemical, and functional studies were performed.ResultsWe obtained a highly vascularized tissue-engineered construct that contracted in response to acetylcholine stimulation. The wall thickness was 4 mm, on average. Histologic and immunostaining analysis of the construct confirmed the presence of a multilayer urothelium on the luminal aspect and deeper fascicles organised tissue composed of differentiated smooth muscle cells and mature fibroblasts without evidence of inflammation or necrosis. Large- and small-diameter vessels were clearly identified histologically in the tissue obtained.ConclusionThe omentum permitted in vivo maturation of seeded scaffolds with the development of a dense vascularisation that is anticipated to prevent fibrosis and loss of contractility. This in vivo maturation into the omentum could be the first step before in situ implantation of the construct.

Related Topics
Health Sciences Medicine and Dentistry Obstetrics, Gynecology and Women's Health
Authors
, , , , , , , ,