Article ID Journal Published Year Pages File Type
3971210 Reproductive BioMedicine Online 2010 7 Pages PDF
Abstract

Parthenogenetic reconstruction is one major strategy to create patient-specific stem cells. The aim of this study was to find the best artificial activation protocol for parthenogenetic activation of mouse and human oocytes comparing different methods. In a first set of experiments, in-vivo matured mouse oocytes and human failed-fertilized, in-vitro and in-vivo matured oocytes were artificially activated by a chemical (ionomycin) or electrical stimulus. In a second set of experiments, a combination of activating agents (electrical pulses followed by ionomycin or SrCl2) was applied in an aim to improve developmental competence. All embryos were evaluated daily until day 6 after activation. Mouse blastocysts were differentially stained to evaluate blastocyst quality. For mouse oocytes and human failed-fertilized oocytes, blastocyst development was significantly higher after electrical activation (P < 0.05). For human in-vitro and in-vivo matured oocytes, blastocyst formation was only obtained after electrical activation of in-vitro matured oocytes. After combining activating agents, no differences in development could be observed. In conclusion, this study revealed that for both mouse and human oocytes development to the blastocyst stage was significantly better after electrical activation compared with chemical activation. Combining activating agents had no further positive effect on developmental potential.Parthenogenetic reconstruction is one major strategy to create patient-specific stem cells. For parthenogenesis, oocytes are artificially activated by a wide range of physical and chemical stimuli in an attempt to mimic as closely as possible the Ca2+ oscillations induced by the spermatozoon during natural fertilization. The aim of this study was to find the best artificial activation protocol for parthenogenetic activation of mouse and human oocytes comparing different methods. In a first set of experiments, in-vivo matured mouse oocytes and human failed-fertilized oocytes, in-vitro and in-vivo matured oocytes were artificially activated by a chemical (ionomycin) or electrical stimulus. In a second set of experiments, a combination of activating agents (electrical pulses followed by ionomycin or strontium chloride) was applied in an aim to improve developmental competence. All embryos were evaluated daily until day 6 after activation. Mouse blastocysts were differentially stained to evaluate blastocyst quality. For mouse oocytes and human failed-fertilized oocytes, blastocyst development was significantly higher after electrical activation. For human in-vitro and in-vivo matured oocytes, blastocyst formation was only obtained after electrical activation of in-vitro matured oocytes. After combining activating agents, no differences in development could be observed. In conclusion, this study revealed that for both mouse and human oocytes development to the blastocyst stage was significantly better after electrical activation compared with chemical activation. Combining activating agents had no further positive effect on developmental potential.

Related Topics
Health Sciences Medicine and Dentistry Obstetrics, Gynecology and Women's Health
Authors
, , , , ,