Article ID Journal Published Year Pages File Type
3972262 Reproductive BioMedicine Online 2009 10 Pages PDF
Abstract

During early embryogenesis, the phenotype reflecting the embryonic genotype emerges only as maternal proteins are replaced by embryonically encoded forms, a process known as the maternal-to-embryonic transition (MET). Little is understood about MET for most proteins. This study investigates how complete deficiency of the murine dihydrolipoamide dehydrogenase gene (Dld), a gene that encodes an enzyme of mitochondrial energy metabolism, affects the phenotype of the early embryo and how the MET of the DLD protein affects the phenotype. Dld-deficient (−/−) embryos were found to develop similarly to wild-type (+/+) or heterozygous (+/−) embryos throughout the preimplantation period. These three genotypic classes also have comparable rates of glucose uptake (4.9–5.0 pmoles/embryo/h) and lactate production (0.97–1.0 pmoles/embryo/h). Dld-deficient embryos at the end of the preimplantation stage have 44% of DLD enzyme present in oocytes, a proportion similar to that found in +/+ or +/− embryos. This study demonstrates that Dld-deficient preimplantation embryos are phenotypically normal, as the MET for the DLD enzyme is only partially complete by the end of the preimplantation period. These findings have implications for phenotype- or enzyme-based approaches to identify mutations in Dld and other genes that encode proteins with similar MET kinetic profiles.

Related Topics
Health Sciences Medicine and Dentistry Obstetrics, Gynecology and Women's Health